
Decentralized Information Flow Control
for Operating Systems – A Survey

Kenneth Ezirim, Wai Khoo, George Koumantaris, Raymond Law, and Irippuge Milinda Perera

The Graduate Center of CUNY
{kezirim,wkhoo,gkoumantaris,rlaw,iperera}@gc.cuny.edu

December 10, 2012

Abstract. Decentralized information flow control (DIFC) is a model that guarantees absolute end-
to-end security. With DIFC Operating systems can have total control of system resources. On top of
that, Operating Systems can monitoring the flow of information through a set of rules and policies.
This paper describes two Decentralized information flow control (DIFC) operating systems, Flume
and HiStar. Flume eases the use of DFIC in existing applications and allows safe interaction between
conventional and DIFC-aware processes. HiStar is more strict in terms of information flow control and
allows users to use data security policies without affecting or changing the structure of applications. This
paper will further discuss whether HiStar or the Flume model can be implemented as new operating
systems. Improvements to the current security model will be suggested taking into consideration the
amended security additions that HiStar and Flume have to offer.

1 Introduction

1.1 Decentralized Information Flow Control (DIFC)

Decentralized Information Flow Control (DIFC) for Operating Systems is a model for controlling
information flow in systems with mutual distrust and decentralized authority. It is an approach to
security that allows software application writers to control how data flows between the pieces of
an application and the outside world. Untrustworthy software are allowed to compute but trusted
security code controls the release of that data [1–3].

As an example of the Decentralized Information Flow Control (DIFC) model, consider Alice
and Bob who want to schedule a meeting while keeping their calendars mostly secret [1]. Alice and
Bob each place a secrecy label on their calendar file, and then only a thread with those secrecy
labels can read it. When the thread is ready to output an acceptable meeting time, it must call
a function that then declassifies the result [1]. The declassification function checks that its output
contains no secret information. For example, the output is simply a date and does not include Bobs
upcoming visit to the doctor [1].

In the Alice and Bob example, he secrecy labels ensure that any program that can read the
data cannot leak the data, whether accidentally or intentionally [2, 3]. The secrecy label is tied to
the data, and it restricts who may access the data. The decision to declassify is localized to a small
piece of code that can be closely audited [1, 3].

1.2 Existing Models of Operating System Security

The existing models for OS security are inadequate. Regular users are moving away from the
traditional computer environment. There is a shift from a desktop related computer environment

to a web-server/cloud related environment. Users store their data in the cloud using services like
VMware, Citrix, NetApp, EMC [3, 4]. The need for applications to run on the web-servers is the
same, therefore we need to find a method to secure our data [4, 5]. Operating system security
abstractions, such as file permissions and user IDs, are too coarse to express many desirable policies,
such as protecting a user’s financial data from a mistrusted browser plug-in. For example, if a user
B is allowed to read A’s data, A cannot controls how B distributes the information it has read,
therefore A looses integrity/control of the data. Control of information propagation is supported
by HiStar & Flume, surveyed on this paper [5].

The current security setup on the cloud supersedes the old one(Regular home Desktop user
setup) and does not take into consideration the needs of the cloud [5]. The average number of
serious vulnerabilities introduced to websites by developers in 2011 was 148, down from 230 in 2010
and 480 in 2009. Vulnerabilities could be found by a hacker, resulting in a high-profile data breach
such as those that affected Sony, Symantec, and AT&T.

1.3 HiStar & Flume

This paper presents HiStar and Flume, an OS-level protection to provide Decentralized Information
Flow Control (DIFC). At a high level, these two OS’s control which messages sent to a machine can
affect which messages sent from the machine, thereby letting us put together secure systems out
of untrustworthy components [6]. HiStar has the luxury of an entirely trusted kernel with thread,
address space, segments, gates, containers, and devices labels [3,6,7]. Flume takes it a step further
by ensuring the need to specify how and when they use their privileges to label flows and also
makes sure that no process can have both an uncontrolled channel and access to private data it
cannot declassify [3, 7].

2 HiStar Architecture

Like most operating systems, HiStar adopts the same operating system abstraction based on six-
level kernel object types namely: threads, address spaces, segments, gates, containers and devices.
HiStar treat each of these objects as a separate entity, assigning labels and clearances that control
the flow of information between the objects. Assigned label either specifies whether an object has
an untainting privileges for each category of taint or how tainted an object is in that category.

Every operation in HiStar requires the kernel to check whether information can flow from one
kernel object to another. Information flow from an object with label L1 to another labeled L2 is
allowed if and only if label L1 is less tainted than label L2.

L1 v L2 iff ∀c : L1(c) ≤ L2(c)

In order to grant some objects untainting privileges the following symbols are used describe how
the ownership level of a category should be treated in both cases of writing and reading another
object.

• ? to lower the ownership level of a category such that a object with untainting rights can write
to another object.

• J - to raise the ownership level of a category so that an object can observe the tainted infor-
mation of another object.

2

The introduction of the symbol J creates six levels of ownership, ordered in the following way:
? < 0 < 1 < 2 < 3 < J. J is actually used in access rules and does not appear in labels of actual
objects. The label L = L1 tL2 is interpreted in terms of category as follows: the label on category
c given that L(c) = max(L1(c), L2(c)). In other words, the relationship L1 tL2 is described as the
least upper bound of the two labels L1 and L2.

Every object in HiStar is characterized by a unique, 61-bit object ID, a label, a quota bounding its
storage usage, 64-byte of mutable, user-defined metadata (used, for instance, to track modification
time) and a few flags such as an immutable flag that makes an object irrevocably read-only.
With the exception of threads, an object’s label is specified upon creation and becomes immutable
afterwards. Some object might allow copies with different labels, which is useful especially in the
case of re-labeling. The simplest kernel object is a segment which is similar to a the concept of file
in other operating systems. A segment represents a variable length byte array used mainly for data
storage.

In HiStar, an object’s label controls the flow of information to and from another object. The
interface is designed such that the following property is always maintained:

The contents of object A can only affect object B if, for every category c in which A is
more tainted than B, a thread owing c takes part in the process.

This implies that a system component can affect others without perfect understanding of either
the components or their interaction with the system. Applications are structured such that key
categories are owned by small amount of critical code, removing the huge responsibility of having
to monitor the entire code. The critical codes are responsible for pre-authorizing actions on an
application’s behalf by modifying taints for an object in the category of interest.

To prevent code from unsanctioned access or replication of private data, threads are accorded a
clearance label. A clearance label specifies the upper bound on the thread’s label and the labels of
objects that the thread would like allocate or grant access to. For example an object with clearance
of {2} cannot read from an object tainted {3} in the read category because its clearance prevents
it from tainting itself {3} in order to perform the read operation.

HiStar has a single-level store - the entire system is restored from the most recent on-disk snap-
shot. This eliminates the need to re-initialize processes such as daemons on booting the operating
system. This mechanism allows for efficiency to implement the file system with the same kernel
abstraction as the virtual memory. The disadvantage is that one can no longer rely on re-booting
to kill off errant application and reclaim system resources. The single-level store in HiStar actually
enhances disk usage as kernel objects are written to disk at each snapshot and can be deallo-
cated from memory once stably stored. With the enforcement of object quotas, the problem of disk
space exhaustion is further minimized, as quotas form a hierarchy under the control of the system
administrator.

2.1 HiStar Kernel Components

In this section, we discuss the components of the HiStar kernel. The section is divided into subsec-
tions that discuss in details threads, containers, quotas, address spaces and gates as they apply to
the HiStar architecture. The security on the flow of information between kernel objects are enforced
using labels with clearance label restricting the level of taint an object can attain.

3

Threads A thread is a kernel object characterized by a label LT and a clearance label CT . A
thread T has LT (c) = 1 and CT = 2 for a category c. The system call to create a thread is

• cat t create category(void)

The system call pseudo-randomly chooses a previously used category c and sets LT (c)← ? and
CT (c) ← 3. At this point T is the only thread whose label maps c to a value below the system
default 1. Therefore, no thread has any inherent privileges with respect to categories created by
other threads. Nevertheless, T can raise its own label through the system call

• int self set label(label t L)

which sets LT ← L provided that the following condition is satisfied LT v L v CT

This modification can enable T to read a tainted object. T can as well increase its clearance
using the following system call

• int self set clearance(label t C)

This system call is successful only if LT v C v (CT t LJ
T)

HiStar imposes some restrictions on threads with respect to their labels and the objects that
they want to access. The restrictions are

• T can observe object O only if LO v LJ
T (i.e. no read up)

• T can modify object O, which in HiStar implies observing O, only if LT v LO v LJ
T (i.e. no

write down).

LT v LO implies that the thread T can write to the object to modify it and LO v LJ
T allows

the thread T to also read from the object. These restriction is repeatedly applied in HiStar’s
specifications and abstractions.

Containers A container is an abstraction in HiStar to enable hierarchical control over object
allocation and deallocation. Similar to Unix directories, containers hold hard links to objects.
The root container is a specially designated container that can never be deallocated. Objects are
deallocated from a container once there is no existing path to that object from the root container.
Possible links between containers and other objects type is presented in the Fig. 1.

When a thread allocates an object, it must specify the container for the object as well as a
32-byte descriptive string stating the object’s purpose. The system call to create a container is

• id t container create(id t D, label t L, char* descrip, int avoid types, uint64 t quota).

D is the ID of an existing container in which a new container will be created, L is the desired
label for the newly created container, descrip is the descriptive string. avoid types is a bitmask
specifying the types of kernel objects that cannot be created in the container or in any of its
descendants. Quota quota is addressed in a separate section.

Directories are implemented in HiStar using containers. The containers can be traversed, started
from the root container, in a similar way as in other file systems using container ID. A separate
segment in each directory container is used to store file names.

4

Fig. 1. Kernel object types in HiStar. Soft links name objects by a particular 〈container ID, object ID〉 container
entry. Threads and gates, which can own categories (i.e., contain * in their labels), are shown by rounded rectangles.

A thread T can create a hard link to a segment S in container D provided it can write to D
(LT v LD v LJ

T) and its clearance is high enough to allocate objects at S’s label (LS v CT). Thus
T can prolong S’s life even without permission to modify S. Most system calls specify objects not
by ID but by 〈container ID, object ID〉 pairs, referred to as container entries. For any thread T to
use container entry 〈D,S〉, D must contain a link to S and T must be able to read D i.e. LD v LT .
For another thread T ′ to have access to actions by T , the following condition must be satisfied
LT v LT ′ . Container entries allows the kernel to control the ability of a thread to know about an
object’s existence. A thread must possess the required permission to read the labels object. After
examining the label of an object more tainted than itself, a thread can decide how to taint itself in
order to read that object.

In HiStar, there is a special notion that every container contains itself. Therefore a thread T
can access a container as 〈D,D〉 when LD v LJ

T even if it cannot read the D’s parent container D′.
The allocation rule for the creation of such a container D in D′ is that the thread T ′ that created
D must own every category c for which LD(c) < LD′(c) i.e. LT ′ v LD′ v LJ

T ′ .

Quotas Every object in HiStar kernel has a quota, which states the limits of its storage space.
The root container is reserved a quota of reserved value inf. A container’s quota, therefore, is a
cumulative of all data structures therein and quotas of objects contained in it. Quotas are specified
during object creation and can be modified using the system call

• int quota move(id t D, id t O, int64 t n)

which adds n bytes to both O’s quota and D’s usage and D must contain O. The thread T
initiating this system call must satisfy the following condition LT v LD v LJ

T and LT v LO v CT

for it to be successful. In order to convey information back to T in the case where there is not
enough byte to allocated, LO v LJ

T must hold.
HiStar supports the existence of hard links to threads and segments in multiple containers but

their quota is added to each container’s usage. But links are not allowed on object whose quotas
may subsequently change. The kernel enforces this by using ”fixed-quota” flags on each object. The
flag must be set before adding a link to an object and can never be cleared.

Address Spaces Address spaces are objects that associated with threads containing a list of
page-aligned virtual addresses (VA). VA is represented by the following mappings

5

V A→ 〈S, offset, npages, flags〉
S is a container entry, offset and npages specify a subset of S to be mapped, flags specify

read, write and execute permission.
Like every other object, an address space is assigned a label LA to which label rules apply.

Threads can modify an address space A only if

LT v LA v LJ
T

and can observe or use A if LA v LJ
T . To lunch a new thread, one is required to specify its address

space and entry point. Threads can switch address via the usage of the system call self set as.
Every thread has a one-page local segment than can be mapped in its address space using a

reserved object ID. The local segment served as reserved space when other part of the virtual space
are not accessible. It can be used by a thread raising its label as a temporary stack while making
copies of its address space.

In HiStar, threads can send alert to each other, which raises an exception and initiate the alert
handler. This operation is only possible if a thread T1 can write to the address space A of a thread
T2 i.e. LT1 v LA v LJ

T1
and also to observe T2 i.e. LT2 v LJ

T1
. These condition suffices to enable T1

to gain full control of T2 as well enable T2 to send information to T1.

Gates Gates are kernel objects that provide protected control transfer among threads. Gates makes
it possible for threads to jump to a pre-defined entry point in an entirely different address space
with the help of an additional privilege. A gate object has the following:

• a label LG, which may contain ? just like threads,
• a clearance label CG

• a thread state, including the container entry of an address space
• an initial entry point
• initial stack pointer
• some closure arguments to pas the entry point function.

A thread T can allocate a gate G whose label and clearance satisfy the condition

LT v LG v CG v CT

A thread T invoking G must satisfy the following conditions

LT v CG

LT v LV

(LJ
T t LJ

G) v LR v CR v (CT t CG)

where LR and CR are the requested label and clearance specified by T . LV is a verify label
provided by T to verify its ownership of categories. The entry point function examines the label LV

for additional access control. Gates play important role in HiStar. Gates can be used to transfer
privileges especially during the login process. This aspect would be discussed further in user-level
design.

6

3 HiStar Implementation

3.1 Hardware

HiStar requires a x86-64 bit processor to run. The required 64-bit processor allows the Operating
System to utilize a vast amounts of virtual memory addressable spaces to be used for file descriptors.
A B+ tree is used to map Object ID values in the labels to disk addressable space. [3] In essence
the object ID works as an index to the various object primatives stored on disk. Because all meta
data like object ID’s, disk offsets, and flags have fixed size values, HiStar’s allocation of memory is
simplified.

3.2 Kernel

One of the main advantage of HiStar is its simple design paradime and small kernel. The fully
trusted kernel has 15,200 lines of C code and 150 lines of assembly. [3] The code itself can be
broken down into 4 main components, architecture specific code for virtual memory and threads,
B+ tree implemention, device driver and DMA-based IDE support, and System Calls.

HiStar maintains two additional B+ trees in addition to the B+ tree used to map object
ID’s to virtual memory addresses. The two B+ trees are represent the remaining free space. The
main purpose of these two trees is for memory management. Specifcally allocation of new memory,
deallocation, and joining adjacent free blocks. Due to HiStar’s technical design certain optimizations
can be assumed, for instance any two immutable labels can have simple function results cached.

HiStars current design does put device drivers inside the fully-trusted kernal. This may pose a
security issue, although if the device driver itself is crafted with the same idea of information flow,
the only drawback is the increased code complexity. In future releases the designers have made
plans to move the drivers outside the kernel.

3.3 User-Level Design

HiStars user level environment was based on Unix’s design. HiStar implements Unix like features
through a port of the uClibc library. [3] uClibc supplies a framework for most Linux type commands,
which rests on a later above HiStar code. A user can fully utilize all linux commands and system
calls as if they were running Linux. HiStar’s primitve objects are abstracted into unix like file
descriptors, processes, file systems, and fork and exec commands. These commands are all run on
the user level, on top of HiStar so no security is surrendered.

4 Flume Architecture

Flume provides DIFS at the granularity of processes and integrates DIFC control on OS abstractions
such as pipes, sockets and file descriptors.

Flume is built in user-space with small kernel patches for implementation convenience and
portability. Flume implementation runs on Linux and BSD. This implies that Flume leverages the
existing kernel components in these system to provide DIFS.

In flume, processes are divided into untrusted processes and trusted processes. Untrusted process
do most of the computation. They are constained but may not be aware of the DIFS controls.
Trusted processes are aware of the DIFS controls and constrain the untrusted processes by setting

7

up privacy and integrity controls. Trusted process have the privileges to violate the information
flow pattern by declassifying private data and endorsing data as high integrity.

Just in HiStar, Flume leverages labels and tags to track data flow in the operating system. Tags
are a set of opaque tokens that carries no inherent meaning. Processes generally associate tags with
some category of secrecy or integrity. Labels on the other hand are subsets of tags. Labels form a
lattice under the partial order of the subset relation. Each Flume process p has two labels - Sp for
secrecy and Ip for integrity. If tag t ∈ Sp, then the system concludes that p has seen some private
data and if tag t ∈ Ip, then every input to the process p is considered as having high integrity.
Files, just like processes, can also have secrecy and integrity labels. A tag can appear in any type
of label but cannot be in both at the same time because the secrecy and integrity usage pattern
are so different.

4.1 Decentralized Privilege

Unlike in IFS where only a trusted entity can create new tags, subtract tags from secrecy labels and
add tags to integrity labels, in Flume DIFS any process can create tags, which gives the process
the privilege to declassify or endorse the created tags.

Flumes allows two capabilities per tag. A process can have its own set of capabilities Op that
enables to add a tag to a label or remove it from a label. For a tag there can be sets of capabilities:
t+ to add a tag to a label and t− to remove a tag from a label.

Allocation of an arbitrary tag t yields a new set of capabilities granting p dual privilege for t

Op ← Op ∪ {t+, t−}

Flume supports global capability set O which is a common capability set to all process in the
system i.e. O ⊆ Op. A process can test whether a given capability is in O but to prevent data
leaks, process prevented from listing the contents of O. However a process can still enumerate its
non-global capabilities i.e. Op −O.

Two processes are allowed to transfer capabilities provided they can communicate. A process
can freely drop non-global capabilities but there are some restrictions to this. For a set of tags T ,
the capability set {T}+ = {t+|t ∈ T} and {T}− = {t−|t ∈ T}.

Export protection is a mechanism employed during the allocation of a new tag b. During the
process of allocation the new tag b+ is added to O where as only the trusted process gets b−. This
implies that any process can add b+ to Sp therefore read b-secret data but only process that own
b− can declassify it and export it out of the system.

A related but much stringent policy is the read protection where neither t+ nor t− of the
allocated secrecy tag is added to O. By this means an allocating process can control the processes
that has access to read t-secret data and those that can declassify the data.

In terms of integrity, after the allocating the integrity tag v, the allocating process, known as
the certifier, adds v− to O but keeps v+ to itself. The certifier alone can endorse information as
high-integrity, other processes can only remove v from Ip.

4.2 Security

One of the assumptions of Flume is that all processes are running in the same machine and ex-
changing messages via flows. The main goal is to track data flow by regulating both communication
between processes and changes in labels.

8

In Flume, safety is defined in terms of security and integrity label changes. A system is considered
secured in Flume if and only if all allowed process label changes are safe and all allowed messages
are safe. When a process requests a change, only those label changes permitted by a process’s
capabilities are safe. Given a process p, let L be either Sp or Ip and let L′ be the new value of the
label. The change from L to L′ is safe if and only if

{L′ − L}+ ∪ {L− L′}− ⊆ Op

An example would be say a process p wishes to subtract a tag t from Sp, to achieve a new
secrecy label S′p. In set notation, t ∈ Sp−S′p and such a transition is safe only if t− ∈ Op, i.e. p has
a subtraction capability.

Safety of messages exchanges is handled in the same manner as in HiStar, where flows are
disallowed from more tainted to less tainted objects(”no read up” and ”no write down” constraints).
In classical IFC, p can send a message to another process q if only Sp ⊆ Sq and Iq ⊆ Ip. Processes
might be restricted to perform read or write but if they can change their labels and relax their
rules, they might be able carry out these operations. This would involve process changing their
labels, using centralized rules to send messages and then restoring their labels once the message
is received, without any permanent label changes. Flumes allows temporary label changes only for
tags in the dual privilege label Dp. Therefore a message from p to q would be safe if and only if

Sp −Dp ⊆ Sq ∪Dq and Iq −Dq ⊆ Ip ∪Dp

Sp −Dp implies p reducing its secrecy level thus declassifying its message, and Ip ∪Dp implies
p raising its integrity level for q thus endorsing the message it is sending. q increases its secrecy
level to Sq ∪Dq in order to be able to receive data from p and endorses the received with integrity
Iq −Dq.

Any external process x outside of Flume’s control, such as remote host, user’s terminal or a
printer, has an empty security and integrity label Sx = Ix = {} and Ox = O. Therefore, processes
can only write to the network only if they can reduce their secrecy label {} because Sp ⊆ Sx and
can read from the network or keyboard if only Ix ⊆ Ip.

Generally, objects such as files and directories are modeled in Flume as a process. This means
that objects like any other process are characterized by their security and integrity label. A process
p attempt to write to an object o becomes a flow from p to o which is reading a flow by o from
p. The operation is subject to restrictions that permits the process p to write to o. In some cases,
such as the creation of a file in a particular, process p must abide by the rules of accessing the
directories which grants it access to eventually create a file.

4.3 Endpoints in Flume

In the section, the general guidelines for the Flume model design is described, providing criteria
for the system implementing the model to be considered secured. The goal of the Flume system is
to fit the existing APIs for process communication while upholding security in the Flume model.

The Flume system applies restriction to file descriptors used as primitives for communication in
Unix systems. The descriptor is assigned an endpoint. An endpoint is characterized by label settings
that control the reading and writing. A process capable of adjusting the label setting can control
the information via the file descriptor. The introduction of endpoints helps to simplify application
development. Failure to deliver a message are failed silently such that the process involved can

9

simply log the error, thereby enabling the programmer to debug the application. Endpoints help to
make many declassification or endorsement decision explicit. File descriptors that serve as avenues
for declassification or endorsement must be explicitly marked by the processes that are using them.

Endpoints, like processes, have security and integrity labels. A process in a quest to acquire
a new file descriptor must provide a new endpoint. An endpoint e by default has Se = Sp and
Ie = Ip. A process can have readable and writable endpoints for the resources that it owns. A
readable endpoint e is considered safe if and only if (Se − Sp) ∪ (Ip − Ie) ⊆ Dp and a writable
endpoint is considered safe if and only if (Sp − Se) ∪ (Ie − Ip) ⊆ Dp. A read/write endpoint is
considered safe only if both conditions are met. Therefore, message from an endpoint e to another
f is considered safe only if e is writable and f is readable, Se ⊆ Sf and If ⊆ Ie

Endpoints are very effective in control communication between processes over sockets and pipes.
They are used to ensure that there no leakage of information by silently dropping data if it is unsafe.
The receiving process has no way of distinguishing between an unsent or dropped message because
it is unsafe, thereby protecting the message from eavesdropping. Even an attempt by a process to
use a mutable endpoint in an unsafe way is caught by the system and informs the process of the
failure and its specific cause. Bi-directional data flow is also supported in using endpoints.

Endpoints are also applied in a process’s file I/O with coarse granularity. When a process opens
a file f it specifies the labels that apply to the endpoint ef . If no labels are specified for ef , they
default to p’s. Reading file f is only successful if the ef is a safe readable endpoint i.e. Sf ⊆ Sef
and Ief ⊆ If . For successful writing to file f by p, ef must be a safe writable endpoint Sef ⊆ Sf
and If ⊆ Ief

Immutable endpoints allow Flume to send and receive data in the system via network connec-
tions, user terminal and the like. The system assigns immutable read/write endpoint to a process
if discovers that the process has access to resources that allow access to transmission or reception
of messages. By default an endpoint e is assigned security and integrity equivalent to Se = Ie = {}.
Since e must always be safe, then the following conditions must be satisfied Sp−Dp = Ip−Dp = {}
for the process to have the privilege to import or export data via network.

5 Flume Implementation

Flume’s design is a component within the kernel rather than an entire Operating System like HiStar.
It is immediately visible that, any process running outside of Flume is vulnerable because of this.
Currently there are two different implementations of Flume, one for Linux and one for OpenBSD.
The Linux implementation runs as a component within the kernel, while the OpenBSD version
utilizes systrace system calls.

5.1 Kernel

The Linux Security Module (LSM) is composed of a Reference Monitor, a dedicated spawner, a tag
registry, and user space file servers, all of which work together to manage labels in Flume. [7] The
Reference Monitor acts as a gateway, between the kernel and processes, as it is the only component
that has direct communication with outside processes. Label tracking and authorization is done
through the Reference Monitor because of this.

To perform any computing on flume a processmust communicate with the reference monitor
through remote procedure calls sent over a control socket. Flume does provide a basic API for

10

Fig. 2. The main components of Flume architecture. The shaded components reflect Flume’s trusted region.

standard file descriptor methods like open. Multithreading is accomplished by allowing multiple
control sockets.

5.2 Confined and Unconfied Processes

Each process is either confined and running within Flume, or unconfined and running outside of
Flume. Unconfied processes are considered outside Flume’s reach and can be accessed with standard
Linux methods. This is fine for less sensitive data, but sensative computing should be completed as
a confined process. A confined process must go through the Reference Monitor in order to use any
system calls and resources. Depending on label values present, processes fit three basic categories,
either the process is allowed to run normally, it is not allowed but Flume runs the commands on
it’s behalf, or the process is blocked entirely.

Any confined process is run as an unprivlidged user in Linux. In essence even if an attacker
managed to take over a confined process, they could only use the same methods dictated by Flume’s
LSM policy.

Flume’s LSM policy disallows all direct access to file systems by confined processes. Fork is
blocked in Flume, due to the fact that all process spawning must occur from within the dedicated
spawner. Instead the creators offer two commands flume pipe and flume socketpair which performs
a safe version that communicates through the Reference Monitor to call the spawn device. These
commands return back a file descriptor that can be used normally.

6 Applications

In this section we survey some of the interesting applications allowed by the two DIFC mechanisms.
It should be noted that these applications are not unique to the DIFC systems, rather, they are
much easier to be constructed within a DIFC environment. The high level idea of these applications
is to minimize the trusted code to an easily manageable size with the help of the underlying DIFC
system. First, we survey three applications of HiStar. Followed by that is an application of Flume.

6.1 Applications of HiStar

Anti-Virus Software A typical anti-virus software requires a high level of privileges than the
regular software in order to perform the scanning/quarantining of the infected files successfully.

11

The problem with this approach is that if the anti-virus software itself is malicious, the user has no
guarantee of security. For example, the software can send the user’s personal data to a third party
server through a covert channel.

Fig. 3. The untrusted anti-virus software constructed with HiStar. HiStar prevents information flowing from lightly-
shaded components to the unshaded. The strongly-shaded component has privileges to relay output to the terminal.

The first application of HiStar is an untrusted virus scanner whose access to user’s files is tightly
controlled by the HiStar’s DIFC service. As you can see from Fig. 3, HiStar prevents the scanner
from flowing the information about the user’s data to the outside of the system by tainting them
as sensitive. Although the scanner has reading and quarantining abilities to the user’s files, it’s not
allowed to transport the files to the external entities.

The way the authors have implemented this anti-virus software is by porting the freely available
ClamAV [8] open-source anti-virus software. The authors claim that they were able to implement
the untrusted version of the software with very minimal change to the existing code. Specifically,
they could move only the access control code to the HiStar service while keeping the features such
as updating the virus database intact. This seems to be a good sign for porting other software to
untrusted versions in the future.

User Authentication Most operating systems require a highly-trusted process with superuser
permissions to manage user authentication. As shown in the previous section, it is desirable to
make that process less trusted in order to avoid unnecessary breaches of user privacy. The new user
authentication application implemented by the authors of HiStar does exactly that. This new system
makes sure that even if the user accidentally provides his password to a malicious authentication
service, only one bit of information about the user’s password is reveled.

As you can see from Fig. 4, this new authentication system consists of four components, none of
which requires superuser privileges. The login component initiates the authentication by asking the
directory service for a handle to the user’s authentication daemon. Next, the login service contacts
the user authentication service in order to verify the user’s password. Both the directory service
and the user authentication service have access to a logging service to record all the authentications
that take place.

VPN Isolation Nowadays, it is common for people to connect their computers to otherwise
firewalled networks through encrypted virtual private networks (VPN). The use of encryption,
however, does not prevent the risk of having some malware either infect internal machines or

12

Fig. 4. A high-level overview of the user authentication system realized through HiStar. None of the components
require superuser privileges.

divulge sensitive files to the world. Therefore, it is desirable to have a VPN service that provides
the guarantees beyond what is provided by the point-to-point encryption.

The third application of HiStar is a VPN isolation service that attempts to mitigate the prob-
lems stated above. The authors have implemented this VPN service by porting the freely available
OpenVPN software. The general idea of this implementation is as follows. The VPN client com-
ponent labels all the incoming data through the VPN connection with a label whose sensitivity
level is higher than that of the network interfaces. Since HiStar prevents information flowing from
high-sensitive components to low-sensitive ones, the malware cannot reveal the user’s data coming
from the VPN connection to the outside world.

6.2 An Application of Flume: MoinMoin Wiki

The application of Flume we are surveying is a Python-based Web publishing system (i.e., “wiki”)
that allows the clients to read and edit the pages hosted at a web server. The original application
(MoinMoin) used very basic access control lists (ACLs) to govern which users and groups can
modify the individual pages of the wiki. The problem was that MoinMoin comprises over 91,000
lines of code in 349 modules. It checked ACLs in 41 places across 22 modules. It goes without
saying that it is highly probable that some security vulnerabilities could be left out while auditing
MoinMoin’s lengthy source code.

The authors of Flume have ported MoinMoin to include Flume for providing access control of
the users. They were able to do this by change only 2% of the original MoinMoin source code. The
ported version is about 30%-40% slower than the original version due to overheads of the Flume
implementation. But, they were able to confine the security related code to a very small code base
and also incorporate additional security policies to the ACLs.

7 Performance

With a new operating system, especially one with added complexity such as security, evaluating its
performance with current state of the art is imperative. Both HiStar [3] and Flume [7] compared
their systems with some Linux version. HiStar compared it with Linux and OpenBSD under several
benchmarks [7]. While Flume compared it with Linux version 2.6.17 with Apache server attached [3].
Let’s first discuss about HiStar in Section 7.1, follow by Flume in Section 7.2.

13

7.1 HiStar

HiStar runs their benchmark tests on three identical system, each with a 2.4 GHz processor, 1 GB
memory, and 7200 RPM hard drive. The first machine ran HiStar, the second ran Fedora, and the
third ran 32-bit OpenBSD with an in-memory mfs file system. Their benchmark tests include

1. Inter-Process Communication (IPC), which measures the latency of communication over a Unix
pipe

2. Fork/exec, which measures the latency of executing /bin/true.
3. Log-structured File System (LFS) small-file
4. LFS large-file

For IPC benchmark, two processes are created and connected by two uni-directional pipes.
That is each process send messages it receives back to the other process. The algorithm then sends
8-byte messages back and forth, making over one million round-trips, then it measures the average
round-trip time. For this benchmark, HiStar performs better than Linux, but somewhat slower than
OpenBSD [3].

For fork/exec benchmark, HiStar did not perform as well as others, partly because Linux and
OpenBSD pre-zero memory pages, which HiStar does not. In OpenBSD and Linux, it takes 9 system
calls to fork a child, that includes executing /bin/true, having /bin/true exit, and having the parent
wait for the child. On the other hand, HiStar requires 317 system calls on top of HiStar’s low-level
interface. The advantage of its low-level interface is that it provides flexibility to implement more
efficient library calls such as spawn. Spawn starts a new process running a specified executable.
This function runs about 3 times faster than fork/exec [3].

For LFS small-file benchmark, it operates on 10000 1kB-sized files and compute the total running
time for creates, reads, and unlinks. HiStar has comparable performance for the asynchronous and
cached variations. Linux, however, outperforms HiStar in uncached read, averaging less than 1

10 the
disk’s 8.3 msec rotational latency to read each file. The authors believe that this performance is due
to read lookahead in the IDE disk because Linux group files from the same directory while HiStar
does not. Disabling this feature, HiStar and Linux perform comparably [3]. In synchronous unlink
phase, HiStar performs worse than Linux because HiStar implemented fsync which checkpoint the
entire system state to disk, while Linux only writes out the modified directory entry. There is a new
group sync, that is not available under Linux, that only checkpoint the system state once at the
end of each benchmark phase. Group sync guarantees that applications either run to completion
or appears to have never started. In addition, it may afford some applications a significant speedup
over Linux, as high as 200 factor [3].

For LFS large-file benchmark, there is three phases involved. For the first phase, a 100MB file
was created by sequentially writing 8KB chunks, with one fsync call at the end. In this phase, HiStar
achieves close to the maximum disk bandwidth of 58MB/sec. For the second phase, the algorithm
tested random write throughput. Specifically, 100MB worth of 8KB chunks were written to random
locations in a file, and the changes were fsync to disk for each 8KB write. For the third phase,
the algorithm tested read performance by sequentially reading the 100MB file in 8KB chunks. This
performance is comparable to Linux. However, since HiStar paged in the entire 100MB file when
first accessed, thus the performance of random reads differs a little from the sequential case [3].

On top of all these benchmarks, HiStar also benchmarked on application level using GNU and
GCC. In HiStar, most of the CPU time is spent in the user space, thus the performance is slower
than Linux and comparable to OpenBSD. However, HiStar achieved good network througput when

14

they downloaded a 100MB file using wget. They also measured the time it took to check a 100MB
file containing randomized binary data for viruses using ClamAV; HiStar performned comparably
with Linux and OpenBSD [3].

7.2 Flume

When evaluating performance in Flume, the authors consider system security performance as well.
Note that Flume is embedded in FlumeWiki, which is created by MoinMoin. Moin has a few
bugs and they had shown that Flume was able to prevent these bugs from revealing private data.
Furthermore, Flume’s information flow control rules forced FlumeWiki to be built in such a way
that does not leak information through its namespace [7].

With added security, there will of course be added overhead. Flume adds about 35-286µs of
overhead to interposed system calls, which is a factor of 4 - 35. These overhead includes additional
IPC, RPC marshalling, additional system calls, and extra computation for security checks. Also,
most Flume system calls consist of two RPCs, from client application to reference monitor, to file
server. This accounts for about 40µs of Flume’s additional latency. For IPC overhead, it is due to
the IPC proxies between processes. In standard Linux, IPC takes about four system calls: 2 reads
and 2 writes. However, due to the proxies, Flume takes about 12 systems: 4 selects, 2 reads, and 2
writes [7].

To further evaluate the system level performance overhead of Flume, read and write experiments
were designed. In the read experiments, a process requests pages from a pool of 200 pages, each is
about 9 KB. In the write experiments, a process writes a 40 byte modification to one of the pages,
of which a server responds with an 9 KB page. Overall, FlumeWiki is 43% slower than Moin in
read and 34% slower in write throughput, thus this added about 40ms latency overhead [7]. This is
probably because for each page read request, the reference monitor handles 753 system calls, which
takes about 28 ms to handle.

Overall, Flume is slower than HiStar because based on the benchmarks HiStar performed com-
parably to Linux while Flume performed consistently worse than Linux.

8 Summary & Conclusion

There are many variants of Decentralized Information Flow Control (DFIC) operating systems. [9].
In this paper we have examined Flume and Histar, but there are also Luminar, Asbestos, DStar,
DEFCon, Jflow, CQUAL, SELinux, and JIF [2]. Despite all the research there is still major work
that needs to be done.

The major goal and the focus of future development of Decentralized Information Flow Control
(DIFC) must lead to a more simplified system and also to be allowed to coexist with legacy software,
both in the kernel and in the application level.

References

1. Roy, I., Porter, D.E., Bond, M.D., McKinley, K.S., Witchel, E.: Laminar: Practical fine-grained decentralized
information flow control (2009)

2. Krohn, M., Tromer, E.: Non-interference for a practical difc-based operating system. In: in IEEE Symposium on
Security and Privacy. IEEE Computer Society. (2009)

3. Zeldovich, N., Boyd-wickizer, S., Kohler, E., Mazieres, D.: Making information flow explicit in histar. In: In Proc.
7th OSDI. (2006)

15

4. Smith, J.W.: Inadequate security principles. (2012)
5. Liskov, A.C.M.B.: A decentralized model for information flow control. (1997)
6. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Frans, M., Eddie, K., Morris, K.R.: Information flow control for

standard os abstractions. In: In SOSP. (2007)
7. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Morris, R.: Information flow control for

standard os abstractions. SIGOPS Oper. Syst. Rev. 41(6) (October 2007) 321–334
8. ClamAV: http://www.clamav.net/.
9. Albanesius, C.: Nov. 5 hacks target paypal, symantec, more. (2012)

16

http://www.clamav.net/

	Decentralized Information Flow Control for Operating Systems – A Survey

