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Abstract—Understanding the privacy relevant charac-
teristics of data sets, such as reidentifiability and joinabil-
ity, is crucial for data governance, yet can be difficult for
large data sets. While computing the data characteristics
by brute force is straightforward, the scale of systems
and data collected by large organizations demands an
efficient approach. We present KHyperLogLog (KHLL),
an algorithm based on approximate counting techniques
that can estimate the reidentifiability and joinability risks
of very large databases using linear runtime and minimal
memory. KHLL enables one to measure reidentifiability of
data quantitatively, rather than based on expert judgement
or manual reviews. Meanwhile, joinability analysis using
KHLL helps ensure the separation of pseudonymous
and identified data sets. We describe how organizations
can use KHLL to improve protection of user privacy.
The efficiency of KHLL allows one to schedule periodic
analyses that detect any deviations from the expected risks
over time as a regression test for privacy. We validate the
performance and accuracy of KHLL through experiments
using proprietary and publicly available data sets.

I. INTRODUCTION

Understanding and monitoring the privacy state of pro-
duction systems is a crucial element of privacy engineer-
ing. Data-flow analysis enables one to know which data
processing workflows are reading which data and gener-
ating which outputs. Static and dynamic code analyses
help to understand what binaries do at a more granular
level e.g., whether they use pre-approved APIs, whether
they read or write sensitive data types, or whether they
use safe defaults. Potential violations of privacy policies
can be surfaced at code review time before an engineer
is allowed to run workflows in production systems.

While data flow analysis and code analysis are power-
ful tools, characterizing the data to assess their sensitivity
(such as we propose in this paper) can often be useful
or necessary. While human reviewers often have good
intuitions and context about the sensitivity of data, there
are obvious limitations: humans may make mistakes, and

are limited in how much they can review. An automated
analysis system can be accurate and scalable. Where
humans would have to settle for evaluating a system or
data set once, automated systems can be re-run. This
provides regression testing for privacy characteristics
and enables data custodians to be confident about the
properties of their systems.

Automatic evaluation becomes challenging as data set
size increases and data becomes increasingly hetero-
geneous. While brute force approaches will work for
smaller data sets, their runtime and memory require-
ments become unworkable when run on petabytes of
data.

We identify two characteristics of data sets that are
often useful during privacy impact assessments: reiden-
tifiability and joinability, and develop a new, scalable,
automated approach to measuring them. While these
terms may have different connotations, we define and
use them consistently throughout the paper.

Reidentifiability is the potential that some supposedly
anonymous or pseudonymous data sets could be de-
anonymized to recover the identities of users. A good
practice is to keep reidentifiable data sets guarded with
strict access control and access audit trails. As companies
collect more information to build useful services it can
be difficult to manually determine when a data set be-
comes reidentifying and requires more careful handling.
The ability to estimate the reidentifiability of data sets
automatically and efficiently reduces the work required
of data custodians to manually label the different data
sets.

Joinability measures whether data sets are linkable by
unexpected join keys. Sometimes it is necessary to retain
multiple data sets with different ID spaces. In those cases
data custodians should avoid linking the two data sets
to respect the choices of users who maintain separate
identities. As an example, consider a website that can be
used either signed-in or signed-out. A user may choose



to use the website signed-out to separate activities from
their signed-in identity. If the website operator maintains
data sets about activities of both signed-in and signed-out
users, it might accidentally include granular information
(e.g. web browser user agent) in both data sets that could
allow the signed-in and signed-out identities to be linked.
In that case, we would say that the identities in the two
data sets are joinable.

There are various existing metrics for comput-
ing reidentifiability and joinability. For example, k-
anonymity [1] and l-diversity [2] are two popular mea-
sures for reidentifiability. Meanwhile, data similarity are
commonly measured using Jaccard index [3] or contain-
ment [4]. Two data sets are joinable if there exist a pair
of data fields, similar in content, that can serve as a join
key. Yet, managing reidentifiability and joinability risks
at scale is more challenging than it appears. The naive
approach requires memory proportional to the size of the
data set, which becomes extremely difficult as data set
sizes climb into the petabytes. Our experiments reveal
how costly this naive approach is even for data sets in
the order of gigabytes (see Section VIII). Linear runtime
and sublinear memory are necessary for large-scale data
analysis.

Contributions. In this paper we present the KHyper-
LogLog (KHLL) algorithm and demonstrate how it can
be used to efficiently characterize both the reidentifia-
bility and joinability of very large data sets. Adapted
from the field of approximate counting, KHLL produces
quantitative measures for reidentifiability and joinability
using only a single pass over the data set and minimal
memory. Both reidentifiability and joinability of data
sets can be estimated using the compact data structures
(colloquially known as “sketches”) of KHLL rather than
raw data. In addition, the approach is format-agnostic,
allowing it to analyze any data set without modification.
We have validated that KHLL is fast, parallelizable and
accurate on both proprietary and public data sets.

This paper starts by describing the design goals and
challenges in Section II, and how KHLL can be used
improve protection of user privacy in organizations with
large data sets in Section III. We provide some back-
ground on approximate counting in Section IV before
presenting our KHLL algorithm in Section V. Next, we
describe the use of KHLL for reidentifiability analysis
in Section VI and joinability analysis in Section VII.
We evaluate the performance and accuracy of KHLL
empirically in Section VIII and Section IX. We present
the related work in Section X before concluding in
Section XI.

II. QUANTIFYING REIDENTIFIABILITY AND

JOINABILITY AT SCALE

Our main goal is to design an efficient approach for
quantifying the reidentifiability and joinability risks of
large data sets. Specifically, it should help mitigate the
risk of mistakes by engineers (e.g., adding additional
fields to data sets without realizing they are overly
unique or pose joinability risks) particularly as complex
production systems evolve. We assume that everyone
using KHLL wants to measure the privacy risks of
their data sets, and so we don’t defend against users
attempting to get KHLL to under-report the risks of their
data.

We introduce the metrics for reidentifiability and join-
ability that will be used in the rest of this paper. These
metrics are defined on individual data fields and can be
directly extended to any combinations of fields.

A. Reidentifiability by Uniqueness Distribution

Let F = {fi} be the set of all values of a field,
and ID = {idj} be the set of all user IDs. Let
{(fi, idj)} ∈ F × ID denote the pairs of F and ID
values as found in a given data set D. Specifically, let
ID [fi] = {idj : (fi, idj) ∈ D} be the set of user IDs
associated with a given field value fi in D.

Definition 1. The uniqueness of a field value fi with
respect to ID is given by the number of unique IDs
associated with fi i.e., |ID [fi]|.

Definition 2. The uniqueness distribution of F with
respect to ID is estimated by the histogram of the
uniqueness of individual values in F in data set D.

Different from k-anonymity [1] which computes the
minimum number k of unique IDs associated with any
values in F , we propose to keep the entire distribution
of k so that it will be easy to compute the fraction of
values in F with high reidentifiability risks, and thus
the potential impact to the data when one would like to
protect the data with k-anonymity or its variants.

In practice, the uniqueness distribution can be skewed.
A few values in F might appear with high frequency
while other values may pose high reidentifiability risks
as they associate with only a small number of user IDs.

As an example, imagine a log that contains the User
Agent (UA) of users who visit a site. UA is an HTTP
header field which describes the application type, oper-
ating system, software vendor and software version of
an HTTP request. To gauge the reidentifiability of UAs,
one can estimate the uniqueness distribution by counting



the number of unique IDs that individual UA strings
associate with. We expect a high percentage of raw UA
strings to be associated with only one or a few user IDs
and thus reidentifying [5].

B. Joinability by Containment

Let F1 and F2 represent the sets of values of two fields
in data sets D1 and D2 respectively. Let |F1| denote the
number of unique values in F1, i.e., the cardinality of
F1, and F1 ∩F2 denote the set of values in both F1 and
F2 (the intersection). We measure the joinability of D1

and D2 through F1 and F2 using the containment metric.

Definition 3. The containment of F1 in F2 is the ratio
between the number of unique values of the intersection
of F1 and F2, and the number of unique values in F1

i.e., |F1 ∩ F2|/|F1|.

Note that containment is similar to the Jaccard Index
but it is asymmetric. Unlike the Jaccard Index which
computes the ratio between the number of unique values
in the intersection of F1 and F2, and the union of F1

and F2, containment uses the number of unique values
in either F1 or F2 as the denominator. This difference is
important when F1 and F2 differ in size. Imagine one
data set that contains a small subset of the users from a
larger data set. The Jaccard Index will always be small
and would not report joinability risk even when all values
of F1 are contained in F2.

C. Scalability Requirements

While both uniqueness distribution and containment
are easy to compute on small data sets, the computation
will need to scale to handle very large data sets. In
addition to hosting user content for digital services,
organizations collect data for providing physical services
(e.g., healthcare and location-based services), improving
user experience and service availability, and anti-spam
and fraud detection purposes. The scale of data can be
huge, both in terms of the number of data fields and
rows, and the number of databases.

It would be a Herculean task for human reviewers
to manually oversee all product iterations and changes
to data strategies. In a similar fashion, individual well-
intentioned groups of engineers also find it hard to keep
up with the increasingly large number of policy and
regulatory requirements.

An ideal system for measuring reidentifiability and
joinability that is scalable will need to use efficient and
parallelizable algorithms. Also, as increasingly heteroge-
nous data is collected and used it will need an approach

agnostic to data types and formats to handle data sets
generated by different engineering teams.

III. APPLYING KHLL TO PROTECT USER PRIVACY

Data custodians can use KHLL in a number of differ-
ent ways to improve user privacy.

Quantitative Measurement: KHLL can be used to
quantitatively measure the reidentifiability risk of a data
set. This can inform data custodians about the sensitivity
of data and its risks so they can plan a suitable and
appropriate data strategy (e.g., anonymization, access
controls, audit trails) at points in the life cycle of the data,
including data collection, usage, sharing and retention (or
deletion).

Exploring Data Strategies: The efficiency of KHLL
provides data custodians a powerful analysis tool for
exploring different data sanitization strategies. Many data
analysis tasks (e.g., experimentation to improve service
availability, anti-spam and fraud detection) can use a
projection (view) of a high-dimensional data set that is
protected with k-anonymity [1] (or related techniques
such as l-diversity [2] or anatomy [6]). KHLL can be run
on different possible combinations of fields in the data
set at once to estimate how much data will be lost as a
function of the technique. Together, the data custodian
and data analysts can decide how to trade off the utility
of the data projection and the reidentifiability risk (e.g.,
which fields to be included, suppressed, generalized or
made disjoint in separate data sets, and whether the data
needs stronger guarantees like differential privacy [7]).

Consider the Netflix prize data set, which contains
the movie ids and ratings given by different users at
different dates (year, month and day). Analyzing the
data set using KHLL, we obtain results that mirror those
of Narayanan and Shmatikov [8]. While no single field
has high uniqueness (e.g., we observe that all movies
included in the data set are rated by at least 50 users),
the combination of movie ratings and dates are highly
unique. An efficient analysis using the like of KHLL
might have helped the Netflix team to measure the
reidentifiability risks, explore alternatives for treating the
data, or to potentially conclude that the risk was too high
to share the data externally.

Regression Testing: In cases where data custodians
regularly produce k-anonymous (or the like) data sets,
KHLL can be further used as a regression test. KHLL
analysis can be run on the output as part of the
anonymization pipeline to expose any implementation
bugs, or to alert on any unexpected changes to the
characteristics of the input data.



Joinability Assessment: KHLL can also enable effi-
cient joinability assessment to protect user privacy. If an
organization collects data about users under multiple ID
spaces in different contexts (e.g. signed in vs signed out),
KHLL can be used to keep the IDs separate, respecting
the choice of users to conduct certain activities in certain
contexts. For example, KHLL analysis can be run on two
data sets of different IDs, and be used to detect data fields
in the two data sets that are similar (high containment in
either direction) and that are highly unique. These data
fields are potential join keys that can be used to trivially
link the two ID spaces. To mitigate joinability risks,
engineers can choose to suppress or generalize one of the
fields, or use access controls to prevent someone from
using the fields to join the two identifiers. The analysis
can be run periodically and attached to an alerting system
that notifies engineers if joinability exceeds pre-specified
limits (e.g., to quickly detect whether any newly added
fields increase joinability risks). Joinability assessment
is highly intractable with pairwise comparisons of raw
data, but KHLL enables joinability approximation based
on its compact data structures (sketches).

Periodic KHLL-based joinability analyses have en-
abled us to uncover multiple logging mistakes that we
were able to quickly resolve. One instance was the exact
position of the volume slider on a media player, which
was mistakenly stored as a 64-bit floating-point number.
Such a high entropy value would potentially increase
the joinability risk between signed-in and signed-out
identifiers. We were able to mitigate the risk by greatly
reducing the precision of the value we logged. In other
cases, we have mitigated joinability risks by dropping
certain fields entirely, or by ensuring that the access
control lists of both data sets are disjoint.

Miscellaneous: If data custodians label their data sets
with information about the semantics of certain fields,
KHLL can be used to propagate labels through the
system and find inconsistencies. If two fields have a high
containment score (in either direction), they are likely to
share the same semantics. If one of the fields is labelled
but the other is not, then the label can be copied to the
second field, and if the two fields have different labels
then engineers can be alerted that one of the labels is
likely incorrect. The scability of KHLL means that it
can be used to propagate labels accross large data sets,
and that the label correctness can be repeatedly checked
by re-running analysis periodically.

Although not a primary purpose, an additional side
effect of making a powerful analysis tool available to dif-
ferent roles in an organization is the increased awareness

of anonymization and user privacy. Data custodians, en-
gineers and analysts can discuss the analysis results with
each other, gain a better understanding of reidentiability
risks when working with user data, and understand why
further anonymization may be necessary.

For all of these use cases one needs to keep in mind the
estimation errors of KHLL (see Section VI-B and Sec-
tion VII-B). It is possible that KHLL may underestimate
reidentifiability or joinability risks (e.g., KHLL might
miss values that are unique to a single user). In general,
data custodians could use KHLL to estimate risks and
impacts on data utility when exploring an appropriate
data protection and anonymization strategy, but then use
exact counting to execute the strategy. While the join-
ability analysis using KHLL might be sensitive to data
formats and transformations, the efficiency of KHLL
makes it the best regression test for data joinability that
we are aware of.

IV. APPROXIMATE COUNTING BASICS

Approximate counting is a technique to efficiently
estimate the cardinality (number of distinct elements)
of a set [9]–[11], typically using a small amount of
memory. This technique can also be extended to com-
pute other statistics such as quantiles [12], [13] and
frequent values [14], [15]. Approximate counting algo-
rithms use compact data structures, colloquially known
as “sketches” that summarize certain observable proper-
ties of the elements in the analyzed data set.

In addition to being memory efficient, approximate
counting sketches support additional operations such as
merging (set union). Large-scale data sets are typically
stored in multiple machines (“shards”), as the entire data
set would not fit in a single machine. In such situations,
one can compute the cardinality of the entire data set
using a two-step approach:

1) Compute the sketches of individual data shards.
2) Merge all the sketches generated in step 1.
In this paper, we extend two approximate counting

algorithms named K Minimum Values (KMV) [9] and
HyperLogLog (HLL) [10] to build KHLL. We provide
some intuition about KMV and HLL in the following.

A. K Minimum Values (KMV)

As implied by the name, KMV estimates the cardi-
nality of a set by keeping the K smallest hash values of
its elements. The intuition behind KMV is as follows.
Suppose there exists a hash function that uniformly
maps input values to its hash space. Note that this
hash function does not need to be a cryptographic



hash function, and one-wayness is not required (i.e., it
does not matter if the hash function can be reversed
in polynomial time). If one computes the hash of each
element in the analyzed data set, one can expect those
hashes to be evenly distributed across the hash space.
Then, one can estimate the cardinality of the analyzed
data set by computing the density of the hashes (i.e., the
average distance between any two consecutive hashes)
and dividing the hash space by the density. Since storing
all the hashes can incur a significant storage cost, one
can store only the K smallest hash values and extrapolate
the density of the entire hash space.

As a concrete example, say there is a hash func-
tion whose outputs are evenly distributed in the range
[1, 1000000]. If K = 100, and the Kth smallest hash
value is 1000, we can compute the density by sim-
ply dividing the Kth smallest hash value by K, i.e.,
density = 1000/100 = 10. Extrapolating to the range of
[1, 1000000], with the uniformity assumption but without
bias correction, one can roughly estimate the number of
unique values as 1000000/10 = 100000.

Computing set union using KMV sketches is straight-
forward. Given two KMV sketches, S1 and S2, one can
find the KMV sketch of the union of the two data sets
by combining the two sketches and retaining only the K
smallest hashes.

KMV sketches are efficient to produce. It requires a
single pass over the data set, but only a space complexity
of O(K), as it consists of K unique hash values of fixed
length. The cardinality estimated by a KMV sketch has
a relative standard error of 1√

K
with the assumption that

the hash space is large enough to keep hash collisions to
a minimum. As a concrete example, with K = 1024 and
using a 64-bit uniformly distributed hashing function,
one can estimate the cardinality with a relative standard
error of 3% and KMV sketch size of 8 KB.

B. HyperLogLog (HLL)

Instead of keeping the K smallest hash values, HLL
further reduces the space requirement by tracking the
maximum number of trailing zeros of the hash values.
The maximum number of trailing zeros increases as more
unique values are added to HLL given the uniformity
assumption of the hash function.

From the hash of an incoming value, HLL uses the
first P bits to determine the bucket number, and uses the
remaining bits to count the number of trailing zeros. HLL
keeps track of the maximum number of trailing zeros at
each of the M = 2P buckets. After processing all values
in the analyzed data set, HLL estimates the cardinality of

each bucket as 2mi , where mi is the maximum number
of trailing zeros seen in bucket i. Finally, HLL estimates
the cardinality of the analyzed data set by combining the
cardinalities of individual buckets by taking the harmonic
mean.

HLL sketches are also efficient to compute (i.e., using
a single pass over the analyzed data set) and provide
cardinality estimates with a relative standard error of
1.04√
M

. Moreover, the space complexity of a HLL sketch
is O(M) since it consists of M counts of trailing zeros.
As a concrete example, with M=1024 and using a 64-bit
uniformly distributed hashing function, one can estimate
the cardinality with a relative standard error of 3% and
HLL sketch size of 768 B.

Heule et al. showed that HLL does not provide a good
estimate for low cardinalities and proposed HLL++ [11]
to accommodate such data sets. HLL++ maintains two
different modes of sketches. When the cardinality is low,
it remains in the sparse representation mode, which keeps
almost the entire hash values. When the list of hash
values kept grows, HLL++ switches to the conventional
HLL mode which has a fixed memory footprint. The
sparse representation allows HLL++ to use linear count-
ing for estimating small cardinalities with negligible
error while also keeping the sketch size small.

V. KHYPERLOGLOG (KHLL)

While cardinality estimates are helpful, they are lim-
ited in many ways for reidentifiability and joinability
analysis. While cardinality estimates can be used to
estimate the average uniqueness when the total unique
IDs in the data set is known, they do not estimate
the uniqueness distribution. The average alone can be
misleading as uniqueness distribution is more likely to
be skewed in practice. The uniqueness distribution is
also useful to inform about various data strategies, for
example the feasibility of suppressing or generalizing
a fraction of the unique values. The distribution could
not be naively estimated as we could not assume the
data sets to be structured in a way that every single row
corresponds to a single user.

We present KHyperLogLog (KHLL) which builds on
KMV and HLL to estimate uniqueness distribution and
containment with a single pass over the data set and low
memory requirements.

This algorithm uses a two-level data structure for
analyzing tuples of field and ID values. KHLL contains
K HLL sketches corresponding to K smallest hashes of
field values. This is approximately equivalent to taking
a uniform random sampling of size K over the field



values, each of which comes with a corresponding HLL
sketch containing the hashes of IDs associated with the
field value. We considered an alternative two-level KMV-
based data structure, named K2MV, but concluded that
KHLL is more memory-efficient and suitable for our
needs. See Appendix XIII for a description of K2MV.

Consider a stream of pairs (fi, idj) ∈ F × ID and a
hash function h. KHLL processes the incoming tuples
as follows:

1) Calculate h(fi) and h(idj).
2) If h(fi) is present in the KHLL sketch, add h(idj)

to the corresponding HLL sketch.
3) Else, if h(fi) is among the K smallest hashes:

a) If there are more than K entries, purge the
entry containing the largest hash of F .

b) Add a new entry containing h(fi) and a HLL
sketch with h(idj).

4) Else, do nothing.

As a specific example, consider a stream of User
Agent (UA) and ID value pairs. Further consider an 8-bit
hash function and a KHLL sketch of K = 3 and M = 8.
The KHLL sketch contains at most 3 entries representing
the 3 smallest values of h(UA) in the first level, each
with a HLL sketch in the second level which has at
most 8 counting buckets. For example, when the KHLL
sketch processes the tuple (UA-4, ID-6) which hashes
to (00000011, 00011010) as shown in Figure 1,
the entry with with the largest h(UA) = 00011000
and its companion HLL sketch is purged to give way to
h(UA-4) and a new HLL.

The memory signature of a KHLL sketch depends
on the parameters K and M as well as the uniqueness
distribution of the data. Per innovation in HLL++ [11],
we design the HLL sketches in KHLL to start in the
sparse representation mode which keeps a sparse list of
the ID hash values. Once this representation exceeds the
fixed size of a conventional HLL, it is converted to a
normal representation with M counting buckets. Using a
64-bit hash function, individual counting buckets require
less than a byte to count the maximum number of trailing
zeros in the ID hash values. Improving over HLL++, we
implemented HLL++ Half Byte which uses only half a
byte for individual counting buckets (see Appendix XII).

Let ID [fi] = {idj : (fi, idj) ∈ D} be the set of user
IDs associated with a given field value fi in data set
D. The memory needed for a KHLL sketch consid-
ering both the sparse and conventional mode is thus
min(8|ID [fi]|,M) in bytes. Since the KMV approx-
imates a K size uniform random sample over field

values, the expected memory usage for the entire KHLL
will be roughly K times the average HLL size i.e.,
K
|F | ·

∑
i
min(8|ID [fi]|,M).

This means that the memory usage of KHLL, while
never above a strict upper bound, will be higher for data
sets with low uniqueness in which most field values are
associated with large user ID sets. Alternatively, when
most field values correspond to only a few unique user
IDs, the memory signature will be much smaller as the
HLL sketches will be in sparse representations.

Note that KHLL does not dictate how the data is
structured. To process a table of data, we simply read
each row in the table to (1) extract the ID value and the
values of fields (or combinations of fields) of interest,
and (2) ingest the tuples of ID and field values into
the corresponding KHLL sketches. This allows for tables
that contain arbitrarily large number of fields, and even
for tables where data about the same user can be repeated
across multiple table rows.

VI. ESTIMATING REIDENTIFIABILITY USING KHLL

From a KHLL sketch of (F, ID), one can estimate
both the cardinality of the field and the number of
unique IDs associated with individual field values i.e.,
the uniqueness distribution. The latter allows us to ef-
ficiently estimate the proportion of field values that are
reidentifying as well as statistics such as the min, max,
and median uniqueness.

A. Evaluating Data Loss and Reidentifiability Trade Off

One can plot the uniqueness distribution to visualize
the percentage of field values or IDs meeting some k-
anonymity thresholds. Figure 2 is an example histogram
of how many field values are associated with each
number of unique IDs. Tweaked slightly, Figure 3 plots
the cumulative percentage of values not meeting varying
k-anonymity thresholds. A relatively anonymous data set
exhibits the curve on the left as most of the field values
are expected to be associated with a large number of IDs.
Conversely, a highly reidentifying data set will exhibit
the curve on the right.

The cumulative distribution is particularly useful as it
estimates how much data will be lost when applying a
k-anonymity threshold. This allows one to determine a
threshold that preserves some data utility while ensuring
a reasonable privacy protection, especially when other
risk mitigation measures are in place such as access
control, audit trails, limited data lifetime or noising of
released statistics. We can see that for the left curve, one
can choose a high threshold with low data loss, while



Fig. 1: A stream of User Agent (UA) and ID tuples processed by an example KHLL sketches with K = 3 and
M = 8. When the tuple (UA-4, ID-6) is added, the entry with the largest h(UA) = 00011000 and its companion
HLL sketch is purged to give way to h(UA-4) and a new HLL. Notice that the sketches HLL1 and HLL4 are in
sparse representation, while HLL2 is in the conventional table form.

Fig. 2: Example uniqueness histogram. We expect User
Agent (UA) to have a uniqueness distribution where a
majority of UA strings are associated with only one or
a few unique IDs.

Fig. 3: Two possible shapes for cumulative uniqueness
distributions. The left has low uniqueness, while the
right contains values that are highly unique.

on the right even a moderate threshold will result in
dropping a large portion of the data set.

Given the efficiency of KHLL analysis, one could
set up periodic analyses to assure that the uniqueness
distribution does not change over time, to monitor, for
example, that no more than X% of values should have
less than k-anonymity.

In addition to analyzing the uniqueness distribution
of individual fields, KHLL can be used to analyze any
combinations of fields, including a complete row. This
can be done, for example, by simply concatenating the
values of multiple fields, and treating the combination
as a new field. The reidentifiability risk will grow
as the number of dimensions increases. For example
with movie recommendations, the combination of movie
name, rating and date of recommendation can be highly
unique [8].

B. Limitations and Mitigations

Using a KHLL sketching algorithm with K = 2048
and 512 HLL buckets would give us an estimated error
rate of 2% for the value cardinality and about 4%
error rate for ID cardinalities. A higher error rate of
ID cardinality estimates is tolerable given that we are
more concerned about field values that associate with
low number of IDs. In those cases the algorithm will
use HLL++ in sparse representation mode which gives
good estimates with minimal errors. Note that the trade
off between accuracy and efficiency is configurable.

Meanwhile as a KHLL sketch effectively maintains K
uniform random samples of field values, the estimated
distribution does come with sampling bias. Specifically,
it is possible that the estimated distribution may miss
some outlier field values that associate with a large or
small number of IDs. One mitigation is to run multiple
analyses using different hash functions (with random



Fig. 4: Example illustration of joinability between Per-
sonally Identifiable Information (PII) and pseudonymous
IDs with raw User Agent (UA) strings being the join key.

seeds) to reduce the chance of outliers being consistently
left out of the analysis.

VII. ESTIMATING JOINABILITY USING KHLL

Estimating the joinability of two data sets through a
pair of fields say F1 and F2 from their KHLL sketches
is also straightforward. Recall that containment of F1 in
F2 is given by |F1 ∩ F2|/|F2|. To compute this, we need
only the cardinality of F1 and F2 plus the cardinality of
their intersection.

Using the inclusion-exclusion principle, we estimate
|F1 ∩ F2| = |F1| + |F2| − |F1 ∪ F2|. The union of F1

and F2 can be easily estimated by merging the KHLL
sketch of F1 and that of F2. An alternative approach
for computing the set intersection is by identifying the
hash values that exist in both the KHLL sketches of F1

and F2 and computing the minmax of the K smallest
hashes on both sides. This would allow us to quantify
the error rate of individual set intersections directly, but
the error rate will vary as the minmax of the hashes will
vary for different pairs of fields. We prefer the simpler
inclusion-exclusion-based approach.

In addition to determining the joinability of fields,
KHLL sketches can provide insights into the potential
joinability of identities in two data sets. For example,
pseudonymous IDs in one data set could be reidentified
if the data set is joinable with another data set containing
Personally Identifiable Information (PII), and if the join
keys are associated with one pseudonymous ID and PII
respectively (see Figure 4).

Specifically, given a pair of sketches of two fields F1

and F2 in data sets D1 and D2 respectively, we could
estimate

• whether F1 is highly contained in F2 or vice-versa
• whether F1 uniquely identifies ID1 in D1

• whether F2 uniquely identifies ID2 in D2

Fig. 5: Two-step approach of reidentifiability and join-
ability analysis: (i) distributed scanners read various data
sets to produce a KHLL sketch for every (F, ID) tuple,
(ii) various stats (including pairwise containment of data
sets) are computed offline based on the sketches (rather
than by comparing the raw data sets).

KHLL allows us to estimate all the above conditions.
Specifically, the first level of KHLL which is essentially
a KMV sketch can be used to estimate the cardinality
of F1 and F2, the cardinality of the intersection, and
thus containment. Meanwhile, the second level of KHLL,
consisting of HLL sketches, gives the uniqueness distri-
bution and thus the ratio of uniquely identifying values
easily.

A. Practical Considerations for Joinability Analysis

Estimating the joinability of large data sets is a hard
problem. Naively estimating the pairwise joinability of
data sets involves a quadratic number of full-table scans.
The number of scans needed can increase quickly, espe-
cially for large data sets with many data fields.

As shown in Figure 5 however, KHLL allows us to
estimate joinability from the sketches alone. This is a
huge saving in that it allows us to scan each data set
only once and then pairwise compare the sketches rather
than original data sets.



The sketching process can be agnostic to the un-
derlying data when the schema of the data sets are
well defined. For example when using protocol buffer
messages [16] we can analyze new data sets without
any need to configure information about fields, especially
when the semantic types of data fields are properly
annotated [17].

The sketching process can also be distributed. The
respective data owners do not need to grant a central
service access to the raw data, but simply to agree on the
sketching method and to upload the sketches to a central
repository. The sketches containing the hash values of
potentially sensitive data including user IDs should still
be treated with care such as by limiting the access and
ensuring a short lifetime.

B. Limitations and Mitigations

Using sketches for joinability analysis comes with
some risks of false positives and negatives.

False positives: The containment metric is agnos-
tic to the semantics of the underlying data. Specif-
ically, containment (or Jaccard) does not distinguish
between fields that use a similar range of val-
ues but are semantically different. As an exam-
ple, we could falsely determine port_number and
seconds_till_mignight fields to be joinable
since they both have an extensive overlap in the integer
range of [0, 86400). The rate of false positives could be
mitigated by requiring a large cardinality threshold on
the potential join keys.

False negatives: The containment metric will fail to
detect similar fields that have been encoded differently
(e.g., base64 versus raw string) or have undergone some
slight transformations (e.g., a microsecond timestamp
versus the coarsened millisecond version). This is a
hard problem in practice. The system could potentially
support some common transformations or encodings
when the semantic type of a data field is known, but
there is no way to handle all possibilities.

The containment metric can also be unreliable when
set sizes are highly skewed. When the expected error rate
of a set is larger than the cardinality of a much smaller
set, the estimate for the set intersection computed using
the inclusion- exclusion principle will be unreliable. One
could potentially complement the containment metric
with some other similarity scores like the similarity
between the frequency distribution of the potential join
keys.

While KHLL can evaluate the pairwise joinability
of data sets based on individual fields, estimating the

joinability of data sets through arbitrary combinations
of fields remains practically infeasible given that in-
tractable number of potential field combinations. One
could however systematically approach this by testing
the joinability between combinations of high-risk fields,
for example, involving only those that have high unique-
ness.

The pairwise joinability analysis does not readily
detect multi-hop joinability. For example, when a data set
D1 is joinable with data set D2, and D2 is joinable with
data set D3 through two different pairs of join keys, we
will not detect that D1 is joinable to D3. Such multi-hop
joinability analysis could be similarly estimated using
clustering and graph traversal algorithms such as label
propagation [18].

VIII. MEASURING EFFICIENCY OF KHLL

The KHLL algorithm and the metrics we estimate with
it have been implemented in a proprietary production
environment in Go using the MapReduce programing
model [19].

For each field (or specified combinations of fields) in
the data set the MapReduce outputs a KHLL sketch in
one pass.

To reason about efficiency, we implemented two naive
MapReduce algorithms: (i) Count Exact (CE) which
computes the exact variants of the metrics that KHLL
estimates, and (ii) Count Exact Single (CES) which
computes the same set of metrics exactly, but analyzing
only one single field during a given MapReduce run.

We designed the CE MapReduce to output, for each
field, a dictionary of field values to ID sets (allowing
the computation of various statistics that a KHLL sketch
approximates). One would expect that emitting the entire
field-value-to-ID-set dictionary will result in substantial
memory overhead. The CES MapReduce is a more
realistic simplification of CE which outputs the tuples
of field values and ID sets of a only single specific field.

The test data set on which we ran our performance
analyses represents the dataflow graph of various pro-
duction operations at Google. Each row in this data set
represents a node in the dataflow graph and has about
50 data fields describing the properties of the operations
as well as the input and output data. One of the data
fields specifies the globally unique name of the machine
where the operation is run or controlled. We used this
machine name as the ID field in our analyses. Note
that this data set does not contain any user data and
is not privacy sensitive as these are not necessary for
performance measurements.



MapReduce type Input size Algorithm CPU usage (vCPUs) RAM usage (GBs) Peak RAM (GB) Output size (GB) Runtime (s)

All fields

1 GB CE 4.01e+3 1.14e+4 9.34e+0 1.04e+0 5.83e+2
KHLL 9.78e+2 2.08e+3 9.45e-1 1.60e-3 1.43e+2

100 GB CE 3.53e+5 3.40e+6 1.10e+2 2.64e+0 1.93e+4
KHLL 6.25e+4 3.11e+4 2.00e+0 3.46e-3 2.63e+2

1 TB CE (n.a.) (n.a.) (n.a.) (n.a.) (n.a.)
KHLL 9.92e+5 2.37e+6 2.52e+0 3.50e-3 1.13e+4

Single field 1 GB CES 7.23e+2 4.76e+3 8.07e-1 1.57e-2 5.76e+2

100 GB CES 4.47e+4 1.30e+5 1.79e+0 2.35e-1 1.10e+3

TABLE I: Performance metrics of KHLL and exact counting algorithms. We configured KHLL to have K=2048
and M=1024. 1 GBs = 1 GB of RAM used for 1 second. Virtual CPU (vCPU) is a platform-neutral measurement
for CPU resources. 1 vCPUs = 1 vCPU used for 1 second. The CE MapReduce for analyzing all data fields in a
1 TB data set was excessively expensive and was halted.

We ran KHLL, CE and CES on several subsets of
the test data set in a shared computational cluster at
Google. These analyses were provided computational
resources at a priority class that is typically used for
batch jobs. Measuring the performance metrics of jobs
in a shared computational cluster is not straightforward
since any given machine can host multiple unrelated
jobs with varying priority classes that can consume
machine resources in unpredictable ways. So we focused
on the performance metrics which a typical customer of
a commercial computational cluster (e.g., Amazon EC2,
Google GCE) would pay for.

Table I shows the performance metrics of the MapRe-
duce runs. As one can see, KHLL is consistently more
efficient than CE across various metrics. Performance
differs by 1 or 2 orders of magnitude even for the
relatively small data sets in our experiment. In fact, the
CE MapReduces for analyzing all data fields in an 1
TB data set became too expensive to be completed in
the shared computational cluster. Interestingly, per our
test data set, it is even more memory efficient (though
slightly slower) to compute the KHLL sketches of all
data fields in a single MapReduce run, than to analyze a
single data field using CES. This performance disparity
is critical in practice, as it is the difference between an
analysis that is feasible to run, and one that is too slow
to be worthwhile.

In various production setups at Google, KHLL scales
to analyze hundreds of data sets, each containing po-
tentially trillions of rows and tens of thousands of data
fields measuring petabytes in sizes, to produce millions
of sketches in each run.

IX. MEASURING ACCURACY OF KHLL

To provide reproducible validation results, we have
implemented a version of the KHLL algorithm in Big-
Query Standard SQL, and simulated the computation
of uniqueness distribution and joinability using publicly
available data sets. The code for the experiments can
likely be adapted for other SQL engines, and is shared
on GitHub [20].

A. Accuracy of Uniqueness Distribution Estimation

We measured the accuracy of the estimated uniqueness
distribution using three publicly available data sets. The
first two are taken from the Netflix Prize data set which
was released in 2006 and shown to be reidentifying for
a significant fraction of the users [8]. We estimate the
uniqueness distribution of (a) movies, and (b) tuples
of movie and date. Note that we do not consider the
entire list of movies (or respectively all pairs of movie
and date) associated with individual pseudo-identifiers.
We could analyze this easily but it will be less in-
teresting for our validation purposes, as most of the
values will be unique. The third data set is the 2010
US Census [21] through which we count the number of
distinct individuals associated with a given (ZIP code,
age) tuple. The corresponding uniqueness distribution
gives an indication of the reidentifiability of these quasi-
identifiers within the US population. As we will see,
the three data sets present different uniqueness profiles,
allowing us to test the accuracy of KHLL estimation in
different situations.

We simulate the KHLL algorithm, with parameters
K = 2048 and M = 1024. We learned from our
production settings that K = 2048 gives a good tradeoff
between precision and memory usage. M = 1048 was



chosen as the smallest possible parameter of the HLL++
library available in BigQuery Standard SQL. We use
M = 512 in our production pipelines, which gives a
comparable degree of precision in ID cardinality estima-
tion (4% vs. 3%). As HLL++ counts elements exactly at
lower cardinalities, this has a negligible influence on our
estimations. For each data set, we compare the KHLL-
based estimate to the true distribution, which is computed
exactly (without approximation) using standard SQL
operators.

Figure 6a plots the cumulative uniqueness distribution
of movies in the Netflix Prize data set. It allows an
analyst to quickly answer the question: how much data
do we lose if we only release the movies which have
been rated by more than k users, for all possible values
of k. The uniqueness of movies is low: the median
number of associated users per movie is larger than 500.
Figure 6b plots the cumulative uniqueness distribution of
the tuples of movie and date. The typical uniqueness of
this setting is high: over 80% of the (movie, date) tuples
are associated with 10 or less unique IDs.

Figure 6c shows the cumulative uniqueness distribu-
tion of tuples (ZIP code, age) in the US census. Each
individual in the census data set appears in only a
single row, different from the case with Netflix data
sets where ratings from the same user exist on several
separate records. The uniqueness of (ZIP code, age)
tuples is variable: a significant portion of possible values
is associated to only a few individuals, but many of the
(ZIP code, age) tuples associate with larger than 100
individuals.

Across all three experiments, we observe that the esti-
mate of uniqueness distribution using KHLL is accurate.

B. Accuracy of Joinability & Containment Estimation

As described in Section VII, joinability is most inter-
esting from the privacy perspective when an pseudony-
mous ID space becomes joinable with PII. Specifically
if fields F1 and F2 are joinable, and that F1 uniquely
identifies a pseudonymous ID space while F2 uniquely
identifies PII. Three conditions are important for estimat-
ing such risk: the ratio of F1 values uniquely identifying
ID1, the ratio of F2 values uniquely identifying ID2,
and the containment of F1 in F2 (or containment of F2

in F1).
The estimate of ratio of field values uniquely identi-

fying an ID can be seen as an estimator of the parameter
p based on an observation of a binomial distribution of
parameters K and p. It is well-known that a binomial
distribution of parameters K and p has a variance of
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Fig. 6: Estimation of uniqueness distribution in different
data sets using KHLL as compared to true distribution
(computed exactly without approximation).

p(1− p)K, so the estimator which divides the result of
the distribution by K has a variance of p(1 − p)/K,
or a standard distribution of

√
p(1− p)/K. Therefore,



we focus our experiments on estimating the containment
metric, as defined in Definition 3.

Using K = 2048 hashes, and assuming F1 and F2

have the same cardinality, the estimate of containment
falls within ±5% of the true value over 90% of the time,
and always stays within 10% of the true value. This is
true regardless of the cardinality of the intersection of
F1 and F2. Figure 7 shows the median as well as the
5th and 95th percentiles of the containment estimation,
for cardinalities of 10,000 and 10,000,000.

When F1 and F2 have different cardinalities, however,
precision can suffer. Figure 8 shows the median as
well as the 5th and 95th percentiles of the estimation
of |F1 ∩ F2|/|F1|, where true value is fixed at 50%,
|F1| = 100, 000, and |F2| varies between 50,000 and
2,000,000 (so, the cardinality ratio |F2|/|F1| ranges from
0.5 to 20).

We can observe that the larger the cardinality ratio
gets, the worse the precision becomes. This is ex-
pected: since we compute |F1 ∩ F2| using the inclusion-
exclusion principle, and the error of the estimation is
proportional to the cardinality estimated, the estimation
error of |F1 ∩ F2| should be roughly proportional to
max(|F1|, |F2|). Since the value of |F1 ∩ F2| is roughly
proportional to min(|F1|, |F2|), the error ratio of the
containment estimation will grow linearly with the car-
dinality ratio. This is what we observe in practice.

X. RELATED WORK

Using the frequency of (combinations of) field values
as a proxy to measure reidentifiability is not new. A large
body of research has emerged following the proposal of
k-anonymity by Sweeney in 1997 [1]. Rather than just
estimating k-anonymity, the KHLL algorithm estimates
the entire uniqueness distribution, which is useful for
evaluating the impact to data loss with k-anonymization
or its variants (e.g. [2], [22]). While different from the
notion of differential privacy [7], the reidentifiability and
joinability risks as estimated using KHLL can serve
to help determine a suitable anonymization strategy,
particularly when considering the different contexts and
use cases of anonymization.

The problem of gathering metadata and organizing
data sets in large organizations has been described on
several occasions. Halevy et al. [23] detail a search
engine for data sets, which gathers metadata at data
set level. Meanwhile, Sen et al. [24] explain how to
detect and propagate field-level semantic annotations
using assisted labeling and dataflow analysis. The tools
we develop to automatically detect joinability of data

sets could be used for a similar purpose. Inconsistent
semantic annotations between data fields with high sim-
ilarity scores (containment or Jaccard) can be automat-
ically detected with the correct annotations propagated
accordingly.

Approximate counting techniques have been the sub-
ject of a significant body of research e.g. [9]–[11],
[25]. The techniques we propose are independent of the
particular algorithm chosen to approximate ID cardinal-
ity. Specifically, the KHLL algorithm could use basic
HyperLogLog [10], HyperLogLog++ [11] or our propri-
etary implementation of HyperLogLog++ Half Byte (see
Appendix XII) to estimate uniqueness distribution and
pairwise containment of data sets albeit with different
memory efficiency.

Beyond privacy, estimating value distribution is also
essential to database query optimization and data stream
processing. Most research in this domain focuses on
sketching values of high frequency (i.e. statistical heavy
hitters or top-k queries). The closest analogue of KHLL
was presented by Cormode et al. [26]; it combines the
Count-Min sketch [27] and the LogLog sketch [28] for
value distribution estimation. However, the Count-Min
algorithm biases towards values of high frequency, which
is not helpful for evaluating the impact of k-anonymity
given the typical choices of k are much smaller than the
frequency of heavy hitters.

MinHash [4] and SimHash [29] are two popular
algorithms for estimating the Jaccard similarity of data
sets. The KHLL algorithm leverages the K Minimum
Values in the first level of the two-level sketch for esti-
mating Jaccard and containment scores, using a similar
log n-space memory footprint. A possible improvement
might be to adapt from HyperMinHash [30], capable
of estimating Jaccard using only loglog n-space. Yet,
given that the bulk of memory usage by KHLL actually
comes from the second level of the sketch for estimating
the uniqueness distribution, we have not explored the
feasibility of adapting KHLL to have a HyperMinHash-
like data structure in the first level.

Finally, despite the extensive research for detecting
data similarity, we have not seen any prior work tackling
the problem of automatically detecting possible joinabil-
ity between different ID spaces across data sets.

XI. SUMMARY

The scale of data and systems in large organizations
demands an efficient approach for reidentifiability and
joinability analysis. The KHyperLogLog (KHLL) al-
gorithm innovates on approximate counting techniques
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Fig. 7: Estimation of containment with fixed cardinalities. The bars indicate the 95th and 5th percentiles of the
estimates.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Cardinality ratio

0

20

40

60

80

100

E
st

im
at

ed
 c

on
ta

in
m

en
t 

(%
) 

  
  

  
  

 

Fig. 8: Estimation of containment with varying cardinal-
ity ratio. The true containment is 50%. The bars indicate
the 95th and 5th percentiles of the estimates.

to estimate the uniqueness distribution and pairwise
containment of very large databases at scale.

The efficiency and scalability of risk analysis using
KHLL represent a practical and useful tool for large
organizations in protecting user privacy. It provides an
objective, quantifiable and replicable measure of reiden-
tifability of data sets. The KHLL algorithm also presents
a novel and practical approach for tackling the joinability
risks of data sets and ID spaces. The efficiency of KHLL
further enables periodic analyses of complex production
systems that evolve over time. We described the practical
use of KHLL for protecting user privacy.

Future work: While KHyperLogLog is memory ef-
ficient, it still requires a linear pass over the data.
Techniques to produce sketches suitable for joinability
analysis without scanning the entire data set would be
helpful. It would also be interesting to see more innova-
tive use of approximate counting in privacy enhancing
techniques (including data anonymization) rather than
just for risk analysis purposes.
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XII. APPENDIX: HLL++ HALF BYTE

Standard HLL++ uses a 64-bit hash. Typically the
counters of trailing zeros in hashes are stored in byte size
values for simplicity and efficiency of implementation.
This arrangement is convenient but memory inefficient
because the counts are only in the range [0, 64]. We



Fig. 9: Histogram of the counters of trailing zeros in
hashes computed on our proprietary data sets.

improve the memory signature slightly with the follow-
ing observation. Since hashes are distributed uniformly
between all buckets, the counters tend to be clustered
together. Rather than storing the actual count, we store
count offsets instead. Specifically, we store a single value
ρ and a table with offset values in the range [0, 16). Real
count values correspond to ρ + offset.

As we see more unique values, all the offsets in the
table increase. When there are no more counters with
offset 0 left, ρ is incremented and each offset in the
table is decremented by 1. It is always possible there
are outlier counters exceeding ρ+15. We store all such
additional values in an outlier list, merging them back
into the table as ρ increases. As shown in Figure 9, we
validated that the number of outliers is small in practice.

By storing offsets, we reduce the number of bits per
HLL bucket from 8 to 4, allowing us to store 2 buckets in
each byte. The additional elements (ρ and the outlier list)
are small so this effectively allows us to have twice as
many counters for roughly the same memory signature.
Since we use the memory savings to increase the number
of HLL buckets this improves the error rate by a factor
of 1√

2
. This is comparable to the recent HLL-TailCut+

algorithm [25] which improves the memory efficiency of
HLL by 45%.

XIII. APPENDIX: K2MV

At a high level KHLL stores a K Minimum Values
(KMV) sketch with an HLL sketch for each distinct hash
value (bucket). An alternative we considered and experi-
mented was using KMV sketches instead of HLL for the
individual buckets. We name this K2MV given the two-
level data structure of minimum hash values. To improve
the performance, we implemented this as a single table

storing all hash values instead of in multiple KMV stores.
The size of the table is governed by parameters K1, K2,
corresponding to the number of hashes stored at each
level. We use an amortized strategy where hash values
are stored in sorted order. New hash values are written
to a buffer which is periodically merged into the sorted
list.


