Broadcast Steganography or How to Broadcast a Secret *Covertly*

Nelly Fazio

The City College of CUNY fazio@cs.ccny.cuny.edu

Antonio R. Nicolosi

Stevens Institute of Technology nicolosi@cs.stevens.edu

Irippuge Milinda Perera

The Graduate Center of CUNY iperera@gc.cuny.edu

Without Crypto

Without Crypto Blogger WordPress WELCOME

Without Crypto Blogger WordPress WELCOME

Without Crypto Blogger WordPress WELCOME Take that down!

With Encryption

With Encryption

With Encryption

With Steganography

With Steganography

With Steganography

With Steganography Oh cute!

With Steganography Take that down! Oh cute!

With Broadcast Steganography [This Work]

KeyGen

- Chosen-Covertext Attack (BS-IND-CCA)
 - Analogous to BE-IND-CCA model
 - Adversary is allowed to corrupt users
 - Adversary is also given access to a decoding oracle
- 2. Publicly-Detectable Replayable Chosen Covertext Attack (BS-IND-PDR-CCA)
 - Similar to BS-IND-CCA, but with stricter restrictions on allowable decoding queries
- Chosen-Hiddentext Attack (BS-IND-CHA)
 - Analogous to BE-IND-CPA model
 - Adversary is only allowed to corrupt users
 - No decoding queries

- Chosen-Covertext Attack (BS-IND-CCA)
 - Analogous to BE-IND-CCA model
 - Adversary is allowed to corrupt users
 - Adversary is also given access to a decoding oracle
- Publicly-Detectable Replayable Chosen Covertext Attack (BS-IND-PDR-CCA)
 - Similar to BS-IND-CCA, but with stricter restrictions on allowable decoding queries
- Chosen-Hiddentext Attack (BS-IND-CHA)
 - Analogous to BE-IND-CPA model
 - Adversary is only allowed to corrupt users
 - No decoding queries

BS-IND-CCA Game

- 1 Setup
- 2 Oracle Phase 1
- 3 Challenge
- 4 Oracle Phase 2
- 5 Guess

1 Setup

$$(MPK, MSK) \leftarrow Setup(1^{\lambda}, N)$$

$$R := \emptyset$$

 $(MPK, MSK) \leftarrow Setup(1^{\lambda}, N)$ $R := \emptyset$

2 Oracle Phase 1

2 Oracle Phase 1

i∈U

2 Oracle Phase 1

 $sk_i \leftarrow \text{KeyGen}(MPK, MSK, i)$

2 Oracle Phase 1

2 Oracle Phase 1

 $sk_j \leftarrow \text{KeyGen}(\text{MPK}, \text{MSK}, j)$ $m \coloneqq \text{Decode}(\text{MPK}, sk_j, s)$

2 Oracle Phase 1

 $sk_j \leftarrow \text{KeyGen}(\text{MPK}, \text{MSK}, j)$ $m \coloneqq \text{Decode}(\text{MPK}, sk_j, s)$

2 Oracle Phase 1

3 Challenge

3 Challenge

 m^* , $T^* \subseteq U / R$

4 Oracle Phase 2

4 Oracle Phase 2

1) $i \notin T^*$ 2) if $j \in T^*$, then $s \neq s^*$

5 Guess

$$Adv_A = |Pr[b = b^*] - \frac{1}{2}|$$

Realizing Broadcast Steganography

Encrypt-then-Embed Paradigm [HLvA02, BaCa05]

Realizing Broadcast Steganography

Encrypt-then-Embed Paradigm [HLvA02, BaCa05]

Embed (rejection-sampling)

- 1. Let H be a strongly universal hash function
- 2. Break the ciphertext c into bits $c_1, c_2, ..., c_l$
- 3. To embed c_i , sample s_i from the channel until $H(s_i) = c_i$
- 4. Output $s = s_1 ||s_2|| \cdots ||s_n||$

Realizing Broadcast Steganography

Encrypt-then-Embed Paradigm [HLvA02, BaCa05]

> Extract

- 1. Break the stegotext s into documents $s_1, s_2, ..., s_l$
- 2. Set $c_i = H(s_i)$
- 3. Output $c = c_1 ||c_2|| \cdots ||c_l||$

Broadcast Encryption + Encrypt-then-Embed = Broadcast Steganography?

- Encrypt-then-Embed requires pseudorandom ciphertexts ...
- ... but, Broadcast ciphertexts have structure

header body
broadcast ciphertext format

Neither header nor body is pseudorandom

Outsider-Anonymous Broadcast Encryption [FaPe12]

- Motivation: Anonymous Broadcast Encryption with short ciphertexts
 - A fully anonymous ciphertext length is subject to a linear lower bound [KiSa12]
 - In some applications, content may give recipient set away
 - ⇒ Suffices to protect anonymity of receivers from outsiders
- Outsider-Anonymity in Broadcast Encryption
 - Trades some degree of anonymity for better efficiency
 - Allows constructions with sub-linear ciphertext length

- Encrypt(S, m)
 - 1. Group users in S into S', a set of disjoint subsets
 - ♦ |S'| is sub-linear in |S|
 - 2. Generate a ciphertext c_i for each s_i in S' (using anonymous IBE)
 - 3. Attach a tag t_i to each c_i (for efficient decryption at the receivers)
 - 4. Bundle all (t_i, c_i) components using one-time signature

- Encrypt(S, m)
 - 1. Group users in S into S', a set of disjoint subsets
 - ♦ |S'| is sub-linear in |S|
 - 2. Generate a ciphertext c_i for each s_i in S' (using anonymous IBE)
 - 3. Attach a tag t_i to each c_i (for efficient decryption at the receivers)
 - 4. Bundle all (t_i, c_i) components using one-time signature

- Encrypt(S, m)
 - 1. Group users in S into S', a set of disjoint subsets
 - ♦ |S'| is sub-linear in |S|
 - 2. Generate a ciphertext c_i for each s_i in S' (using anonymous IBE)
 - 3. Attach a tag t_i to each c_i (for efficient decryption at the receivers)
 - 4. Bundle all (t_i, c_i) components using one-time signature

- Encrypt(S, m)
 - 1. Group users in S into S', a set of disjoint subsets
 - ♦ |S'| is sub-linear in |S|
 - 2. Generate a ciphertext c_i for each s_i in S' (using anonymous IBE)
 - 3. Attach a tag t_i to each c_i (for efficient decryption at the receivers)
 - 4. Bundle all (t_i, c_i) components using one-time signature

- Encrypt(S, m)
 - 1. Group users in S into S', a set of disjoint subsets
 - ♦ S' is sub-linear in S
 - 2. Generate a ciphertext c_i for each s_i in S' (using anonymous IBE)
 - 3. Attach a tag t_i to each c_i (for efficient decryption at the receivers)
 - 4. Bundle all (t_i, c_i) components using one-time signature

- Encrypt(S, m)
 - 1. Group users in S into S', a set of disjoint subsets
 - ♦ |S'| is sub-linear in |S|
 - Generate a ciphertext c_i for each s_i in S' (using anonymous IBE)
 - 3. Attach a tag t_i to each c_i (for efficient decryption at the receivers)
 - 4. Bundle all (t, c_i) components using one-time signature

- Notice that ciphertexts have no header ...
- ... but still exhibit structure due to tags and signature
- Idea: Toward a BS construction, make these components pseudorandom

pseudorandom group elements

- How to make oABE ciphertexts pseudorandom?
 - Replace the underlying AIBE with AIBE\$ [AgBo09]
 - 2. Apply an entropy smoothing hash to group elements
 - 3. Replace one-time signature with a MAC (implemented via PRF)

pseudorandom group elements

- How to make oABE ciphertexts pseudorandom?
 - 1. Replace the underlying AIBE with AIBE\$ [AgBo09]
 - 2. Apply an entropy smoothing hash to group elements
 - 3. Replace one-time signature with a MAC (implemented via PRF)

- How to make oABE ciphertexts pseudorandom?
 - Replace the underlying AIBE with AIBE\$ [AgBo09]
 - 2. Apply an entropy smoothing hash to group elements
 - 3. Replace one-time signature with a MAC (implemented via PRF)

- How to make oABE ciphertexts pseudorandom?
 - Replace the underlying AIBE with AIBE\$ [AgBo09]
 - 2. Apply an entropy smoothing hash to group elements
 - 3. Replace one-time signature with a MAC (implemented via PRF)

- How to make oABE ciphertexts pseudorandom?
 - Replace the underlying AIBE with AIBE\$ [AgBo09]
 - 2. Apply an entropy smoothing hash to group elements
 - Replace one-time signature with a MAC (implemented via PRF)

Question: How to embed the MAC key in c's and still obtain CCA security?

Solution: Construct an encapsulation mechanism [DoKa05, BoKa05]

with pseudorandom commitments

Comparison of BE Schemes with Anonymity Properties

Scheme	PK	sk	c	Security Model	Anonymity
BBW06	O(N)	O(1)	O(N-r)	Static, RO	Full
LPQ12	O(N)	O(1)	O(N-r)	Adaptive, Standard	Full
FaPe12a	O(N)	O(log N)	O(r log (N/r))	Adaptive, Standard	Outsider
Fa <mark>Pe</mark> 12b	O(N log N)	O(N)	O(r)	Adaptive, Standard	Outsider
This Work	O(N)	O(log N)	O(r log (N/r))	Adaptive, Standard	Outsider

N: total number of users, r: number of revoked users

Only oABE\$ provides pseudorandom ciphertexts

Our Construction of Broadcast Steganography

- Highlights
 - oABE\$ + Encrypt-then-Embed = Broadcast Steganography
 - Our constructions have sub-linear stegotext length
 - For CCA security, requires stateless channel
- Constructions:
 - 1. BS-CHA
 - BS-PDR-CCA
 - 3. BS-CCA

BE and Friends

Summary

- Initiated the study of Broadcast Steganography
 - A multi-recipient communication tool to plant undetectable messages in innocentlooking conversations
- Put forth sublinear constructions of broadcast steganography under a range of security notions
- In the process, devised efficient broadcast encryption schemes with pseudorandom ciphertexts and anonymity properties
 - Implementing CCA checks without imposing structure on broadcast ciphertexts required overcoming multiple technical hurdles